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2.16. Central limit theorem - statement, heuristics and discussion

If Xi are i.i.d with zero mean and finite variance σ2, then we know that E[S2
n]=

nσ2, which can roughly be interpreted as saying that Sn ≈ "
n (That the sum of n

random zero-mean quantities grows like
"

n rather than n is sometimes called the
fundamental law of statistics). The central limit theorem makes this precise, and
shows that on the order of

"
n, the fluctuations (or randomness) of Sn are indepen-

dent of the original distribution of X1! We give the precise statement and some
heuristics as to why such a result may be expected.

Theorem 2.51. Let Xn be i.i.d with mean µ and finite variance σ2.Then, Sn−nµ
σ
"

n
converges in distribution to N(0,1).

Informally, letting χ denote a standard Normal variable, we may write Sn ≈ nµ+
σ
"

nχ. This means, the distribution of Sn is hardly dependent on the distribution of
X1 that we started with, except for the two parameter of mean and variance. This is
a statement about a remarkable symmetry!

Heuristics: Why should one expect such a statement to be true? Without losing

generality, let us take µ = 0 and σ2 = 1. As E
[(

Sn"
n

)2
]
= 1 is bounded, we see that

n− 1
2 Sn is tight, and hence has weakly convergent subsequences. Let us make a leap

of faith and suppose that Sn"
n converges in distribution. To what? Let Y be a random

variable with the limiting distribution. Then, (2n)−
1
2 S2n

d→Y and further,

X1 + X3 + . . .+ X2n−1"
n

d→Y ,
X2 + X4 + . . .+ X2n"

n
d→Y .

But (X1, X3, . . .) is independent of (X2, X4, . . .). Therefore, by an earlier exercise, we
also get

(
X1 + X3 + . . .+ X2n−1"

n
,

X2 + X4 + . . .+ X2n"
n

)
d→ (Y1,Y2)

where Y1,Y2 are i.i.d copies of Y . But then, by yet another exercise, we get

S2n"
2n

= 1
"

2

(
X1 + X3 + . . .+ X2n−1"

n
+ X2 + X4 + . . .+ X2n"

n

)
d→ Y1 +Y2"

2

Thus we must have Y1 +Y2
d=
"

2Y . Therefore, if ψ(t) denotes the characteristic
function of Y , then

ψ(t)=E
[
eitY

]
=E

[
eitY /

"
2
]2

=ψ
(

t
"

2

)2
.

Similarly, for any k ≥ 1, we can prove that Y1+ . . .Yk
d=
"

kY , where Yi are i.i.d copies
of Y and hence ψ(t) = ψ(tk−1/2)k. From this, by standard methods, one can deduce
thatψ(t)= e−at2

for some a > 0 (exercise). By uniqueness of characteristic functions,
Y ∼ N(0,2a). Since we expect E[Y 2]= 1, we must get N(0,1).

It is an instructive exercise to prove the CLT by hand for specific distributions.
For example, suppose Xi are i.i.d exp(1) so that E[X1] = 1 and Var(X1) = 1. Then
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Sn ∼Γ(n,1) and hence Sn−n#
n has density

fn(x) = 1
Γ(n)

e−n−x
#

n(n+ x
#

n)n−1#n

= e−nnn− 1
2

Γ(n)
e−x

#
n
(
1+ x

#
n

)n−1

→ 1
#

2π
e−x2

by elementary calculations. By an earlier exercise convergence of densities implies
convergence in distribution and thus we get CLT for sums of exponential random
variables.

Exercise 2.52. Prove the CLT for X1 ∼ Ber(p). Note that this also implies CLT for
X1 ∼Bin(k, p).

2.17. Central limit theorem - Proof using characteristic functions

We shall use characteristic functions to prove the CLT. To make the main idea of
the proof transparent, we first prove a restricted version assuming third moments.
Once the idea is clear, we prove a much more general version later which will also
give Theorem 2.51. We shall need the following fact.

Exercise 2.53. Let zn be complex numbers such that nzn → z. Then, (1+ zn)n → ez.

Theorem 2.54. Let Xn be i.i.d with finite third moment, and having zero mean and
unit variance. Then, Sn#

n converges in distribution to N(0,1).

PROOF. By Lévy’s continuity theorem, it suffices to show that the characteristic
functions of n− 1

2 Sn converge to the of N(0,1). Note that

ψn(t) :=E
[
eitSn/

#
n
]
=ψ

(
t

#
n

)n

where ψ is the c.f of X1. Use Taylor expansion

eitx = 1+ itx− 1
2

t2x2 − i
6

t3eitx∗ x3 for some x∗ ∈ [0, x] or [x,0].

Apply this with X1 in place of x, tn−1/2 in place of t, take expectations and recall that
E[X1]= 0 and E[X2

1]= 1 to get

ψ

(
t

#
n

)
= 1− t2

2n
+Rn(t), where Rn(t)=− i

6
t3E

[
eitX∗

1 X3
1

]
.

Clearly, |Rn(t)| ≤ Cn−3/2 for a constant C (that depends on t but not n). Hence
nRn(t)→ 0 and by Exercise 2.53 we conclude that for each fixed t ∈R,

ψn(t)=
(
1− t2

2n
+Rn(t)

)n

→ e−
t2
2

which is the c.f of N(0,1). ■
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2.18. CLT for triangular arrays

The CLT does not really require the third moment assumption, and we can mod-
ify the above proof to eliminate that requirement. Instead, we shall prove an even
more general theorem, where we don’t have one infinite sequence, but the random
variables that we add to get Sn depend on n themselves.

Theorem 2.55 (Lindeberg Feller CLT). Suppose Xn,k, k ≤ n, n ≥ 1, are random
variables. We assume that

(1) For each n, the random variables Xn,1, . . . , Xn,n are defined on the same prob-
ability space, are independent and have finite second moments.

(2) E[Xn,k]= 0 and
∑n

k=1 E[X2
n,k]→σ2, as n →∞.

(3) For any δ> 0, we have
∑n

k=1 E[X2
n,k1|Xn,k |>δ]→ 0 as n →∞.

Corollary 2.56. Let Xn be i.i.d, having zero mean and unit variance. Then, Sn%
n

converges in distribution to N(0,1).

PROOF. Let Xn,k = n− 1
2 Xk fo rk = 1,2, . . . ,n. Then, E[Xn,k]= 0 while

∑n
k=1 E[X2

n,k]=
1
n

∑N
k=1 E[X2

1]=σ2, for each n. Further,
∑n

k=1 E[X2
n,k1|Xn,k |>δ]=E[X2

11|X1|>δ
%

n] which
goes to zero as n →∞ by DCT, since E[X2

1] <∞. Hence the conditions of Lindeberg
Feller theorem are satisfied and we conclude that Sn%

n converges in distribution to
N(0,1). ■

Now we prove the Lindeberg-Feller CLT. As in the previous section, we need a
fact comparing a product to an exponential.

Exercise 2.57. If zk,wk are complex numbers with absolute value bounded by θ,
then

∣∣∏n
k=1 zk −

∏n
k=1 wk

∣∣≤ θn−1 ∑n
k=1 |zk −wk|.

PROOF. (Lindeberg-Feller CLT). The characteristic function of Sn = Xn,1+. . .+
Xn,n is given by ψn(t) =

n∏
k=1

E
[
eitXn,k

]
. Again, we shall use the Taylor expansion of

eitx, but we shall need both the second and first order expansions.

eitx =
{

1+ itx− 1
2 t2x2 − i

6 t3eitx∗ x3 for some x∗ ∈ [0, x] or [x,0].
1+ itx− 1

2 t2eitx+ x2 for some x+ ∈ [0, x] or [x,0].

Fix δ> 0 and use the first equation for |x| ≤ δ and the second one for |x| > δ to write

eitx = 1+ itx− 1
2

t2x2 +
1|x|>δ

2
t2x2(1− eitx+ )−

i1|x|≤δ
6

t3x3eitx∗ .

Apply this with x = Xn,k, take expectations and write σ2
n,k :=E[X2

n,k] to get

E[eitXn,k ]= 1− 1
2
σ2

n,kt2 +Rn,k(t)

where, Rn,k(t) := t2

2 E
[
1|Xn,k |>δX2

n,k

(
1− eitX+

n,k
)]

− it3

6 E
[
1|Xn,k |≤δX3

n,k eitX∗
n,k

]
. We can

bound Rn,k(t) from above by using |Xn,k|31|Xn,k |≤δ ≤ δX2
n,k and |1− eitx| ≤ 2, to get

(2.17) |Rn,k(t)| ≤ t2E
[
1|Xn,k |>δX2

n,k

]
+ |t|3δ

6
E

[
X2

n,k

]
.



2.18. CLT FOR TRIANGULAR ARRAYS 51

We want to apply Exercise 2.57 to zk = E
[
eitXn,k

]
and wk = 1− 1

2σ
2
n,kt2. Clearly

|zk| ≤ 1 by properties of c.f. If we prove that max
k≤n

σ2
n,k → 0, then it will follow that

|wk| ≤ 1 and hence with θ = 1 in Exercise 2.57, we get

limsup
n→∞

∣∣
n∏

k=1
E

[
eitXn,k

]
−

n∏

k=1

(
1− 1

2
σ2

n,kt2
) ∣∣ ≤ limsup

n→∞

n∑

k=1
|Rn,k(t)|

≤ 1
6
|t|3σ2δ (by 2.17)

To see that max
k≤n

σ2
n,k → 0, fix any δ > 0 note that σ2

n,k ≤ δ2 +E
[
X2

n,k1|Xn,k |>δ
]

from

which we get

max
k≤n

σ2
n,k ≤ δ2 +

n∑

k=1
E

[
X2

n,k1|Xn,k |>δ
]
→ δ2.

As δ is arbitrary, it follows that max
k≤n

σ2
n,k → 0 as n →∞. As δ> 0 is arbitrary, we get

(2.18) lim
n→∞

n∏

k=1
E

[
eitXn,k

]
= lim

n→∞

n∏

k=1

(
1− 1

2
σ2

n,kt2
)
.

For n large enough, max
k≤n

σ2
n,k ≤ 1

2 and then

e−
1
2σ

2
n,k t2− 1

4σ
4
n,k t4

≤ 1− 1
2
σ2

n,kt2 ≤ e−
1
2σ

2
n,k t2

.

Take product over k ≤ n, and observe that
∑n

k=1σ
4
n,k → 0 (why?). Hence,

n∏

k=1

(
1− 1

2
σ2

n,kt2
)
→ e−

σ2 t2
2 .

From 2.18 and Lévy’s continuity theorem, we get
∑n

k=1 Xn,k
d→ N(0,σ2). ■


