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2.16. Central limit theorem - statement, heuristics and discussion

If X; are i.i.d with zero mean and finite variance o2, then we know that E[S2] =
no?, which can roughly be interpreted as saying that S, = \/n (That the sum of n
random zero-mean quantities grows like \/n rather than n is sometimes called the
fundamental law of statistics). The central limit theorem makes this precise, and
shows that on the order of \/n, the fluctuations (or randomness) of S,, are indepen-
dent of the original distribution of X;! We give the precise statement and some
heuristics as to why such a result may be expected.

Theorem 2.51. Let X, be i.i.d with mean p and finite variance o2.Then, S;:/'ni”

converges in distribution to N(0,1).

Informally, letting y denote a standard Normal variable, we may write S, = nu+
ov/ny. This means, the distribution of S, is hardly dependent on the distribution of
X1 that we started with, except for the two parameter of mean and variance. This is
a statement about a remarkable symmetry!

Heuristics: Why should one expect such a statement to be true? Without losing
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n 38 » 1s tight, and hence has weakly convergent subsequences. Let us make a leap

of faith and suppose that 3—% converges in distribution. To what? Let Y be a random

variable with the limiting distribution. Then, (2n)’%82n 4y and further,

generality, let us take p =0 and 0> =1. As E =1 is bounded, we see that

X1+Xs+...+Xon-1 4 Xo+Xy+...+ X9 4
-Y, Y.
N vn
But (X1,X3,...) is independent of (X9,X4,...). Therefore, by an earlier exercise, we
also get

(Xl +X3+...+X2n,1 X2+X4+...+X2n
vn ’ Vvn

where Y1,Y> are i.i.d copies of Y. But then, by yet another exercise, we get

Son 1 (X1+X3+...+X2n_1 X2+X4+...+X2n) d Y1+Yo

Van v N ’ vn NG

Thus we must have Y7 + Yy d V2Y. Therefore, if y(¢) denotes the characteristic
function of Y, then

)i(Yl,Yz)

Y(O=E[o] =B [eitY/\/Q]z _y (é)z

Similarly, for any £ = 1, we can prove that Y1 +...Y}, d VEY , where Y; are i.i.d copies
of Y and hence w(t) = w(tk_l/ 2)% . From this, by standard methods, one can deduce
that ¢(¢) = ¢~ for some a > 0 (exercise). By uniqueness of characteristic functions,
Y ~N(0,2a). Since we expect E[Y2] = 1, we must get N(0,1).

It is an instructive exercise to prove the CLT by hand for specific distributions.
For example, suppose X; are i.i.d exp(1) so that E[X1] =1 and Var(X;) = 1. Then
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by elementary calculations. By an earlier exercise convergence of densities implies
convergence in distribution and thus we get CLT for sums of exponential random
variables.

Exercise 2.52. Prove the CLT for X; ~ Ber(p). Note that this also implies CLT for
X; ~Bin(k, p).

2.17. Central limit theorem - Proof using characteristic functions

We shall use characteristic functions to prove the CLT. To make the main idea of
the proof transparent, we first prove a restricted version assuming third moments.
Once the idea is clear, we prove a much more general version later which will also
give Theorem [2.51] We shall need the following fact.

Exercise 2.53. Let z, be complex numbers such that nz,, — z. Then, (1+2z,)" — €.

Theorem 2.54. Let X, be i.i.d with finite third moment, and having zero mean and
unit variance. Then, i—”ﬁ converges in distribution to N(0,1).

PROOF. By Lévy’s continuity theorem, it suffices to show that the characteristic
1
functions of n™2S,, converge to the of N(0,1). Note that

Wn(t)ZZE[eitSn/\/ﬁ] :w(%)n

where v is the c.f of X;. Use Taylor expansion

3

e =1+itx— §t2x2 - Et3e”x x for some x* € [0,x] or [x,0].

Apply this with X in place of x, tn ™12 in place of ¢, take expectations and recall that
E[X1]=0 and E[X?]=1 to get

t t2 i e
"’(ﬁ) =1-— +Ru(t), where Ry()= - tE e ¥ix3).

Clearly, |[R,(#)| < Cn=32 for a constant C (that depends on ¢ but not n). Hence
nR,(t) — 0 and by Exercise [2.53|we conclude that for each fixed ¢ € R,

2 n 12
Yalt) = (1 2 +Rn<t)) —eh
2n

which is the c.f of N(0,1). [ ]
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2.18. CLT for triangular arrays

The CLT does not really require the third moment assumption, and we can mod-
ify the above proof to eliminate that requirement. Instead, we shall prove an even
more general theorem, where we don’t have one infinite sequence, but the random
variables that we add to get S, depend on n themselves.

Theorem 2.55 (Lindeberg Feller CLT). Suppose X, 1, k <n, n =1, are random
variables. We assume that

(1) Foreach n, the random variables X, 1,...,X, , are defined on the same prob-

ability space, are independent and have finite second moments.
(2) E[X, :]1=0and Z,’e‘:lE[Xg Bl 02, as n — oo.
(8) For any 6 >0, we have ZZ:lE[XrZL kl\Xn,kI>5] —0asn—oo.

Corollary 2.56. Let X, be i.i.d, having zero mean and unit variance. Then, \S/—"ﬁ
converges in distribution to N(0,1).

PROOF. Let X, = n_%Xk fork =1,2,...,n. Then, E[X,, ;] =0 while ZZZIE[X’% 2]
+ Xn-1 BIX}1= 02, for each n. Further, Y}_, E[X? , 1)x, ,j>6] = E[X71 x, 1.5, /7] which

goes to zero as n — oo by DCT, since E[X %] < 0o. Hence the conditions of Lindeberg

Feller theorem are satisfied and we conclude that i—”ﬁ converges in distribution to
N(0,1). [ |

Now we prove the Lindeberg-Feller CLT. As in the previous section, we need a
fact comparing a product to an exponential.

Exercise 2.57. If z;,w; are complex numbers with absolute value bounded by 6,
then |TT}_, zx —[1}_ wr | <0" P X0 12 —wpl.

PROOF. (Lindeberg-Feller CLT). The characteristic function of S, = X, 1+...+
n .
X, is given by y,(t) = [] E[e/*X»*]. Again, we shall use the Taylor expansion of
k=1

e'** but we shall need both the second and first order expansions.

oitt _ {1 +itx— %t2x2 - ét3e”x x8 for some x* €[0,x] or [x,0].

1+itx— %tze”’ﬁxz for some x* €[0,x] or [x,0].
Fix 6 > 0 and use the first equation for |x| < § and the second one for |x| > § to write

. . 1 | [ R 2 Iy -
el — 1 pitx— =252 + lc[> t2x2(1_eltx )— lx|< 343 pitx"

Apply this with x = X, ;, take expectations and write O'Z p = ELX ,21 5] to get

. 1
E[eLtXn,k] =1- Eai,ktz +Rn,k(t)

where, R, 4() = 5E[1ix, ,156X2,, (1—e”Xik)] _i [1|Xn’k|S5XfL’keitX;’k]. We can
bound R, ;(t) from above by using |Xn,k|31|Xn,k|S5 < 6X,% pand [1- el < 2, to get

|£136

(2.17) IR, 1(0)| < £°E [1|Xn,k|>aXr2l,k] * %

E[x2,].
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We want to apply Exercise [2.57| to z; = E[e!®n*] and wy, = 1 - %02 t2. Clearly
|zr| < 1 by properties of c.f. If we prove that I]IelaXU T 0, then it Wlll follow that
lwg| <1 and hence with 0 = 1 in Exercise[2.57] we get

limsup | H E [ ’tX”k] 1_[ (1— ~o? &t ) | =< limsup Z IR, 5 (2)]
n—oo n—oo p—1
< g|t|3a25 (by[2.17

To see that 11?32(0 # — 0, fix any 6 > 0 note that 0 p = 62+E [szl,klan,kl>5 from
which we get

— 52,

maxa 24 ZE[ IXnk|>5
k<n n.k

As § is arbitrary, it follows that Izlaxan p — 0asn—oo. As § >0 is arbitrary, we get
< ,
n

(2.18) lim ]‘[E[ Xk | = lim [] (1—%03’,3152).

n—oo k=1
For n large enough, I}elaxaz PS3 1 and then

ZtZ

_1 2 42
e ZUn,k ¢

_lgt 4 1 -1
1% <1202 2 <o 2%k
S1-got s

Take product over k£ < n, and observe that ;' _, O'i’k — 0 (why?). Hence,
n 1 o242
I 2 L2 -t

(1_§0n,kt )-’@ 2,

From and Lévy’s continuity theorem, we get Y.)' | X, » 4, N(0,02). [ ]



